Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38730561

RESUMO

Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.


Assuntos
Antibacterianos , Biofilmes , Gases em Plasma , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gases em Plasma/farmacologia , Animais , Humanos , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Modelos Animais de Doenças , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico
2.
Foods ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611358

RESUMO

In recent years, non-thermal plasma (NTP) has emerged as a promising tool for decontamination and disinfection within the food industry. Given the increasing resistance of microbial biofilms to conventional disinfectants and their adverse environmental effects, this method has significant potential for eliminating biofilm formation or mitigating the metabolic activity of grown biofilms. A comparative study was conducted evaluating the efficacy of UV radiation and NTP in eradicating mature biofilms of four common foodborne filamentous fungal contaminants: Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The findings reveal that while UV radiation exhibits variable efficacy depending on the duration of exposure and fungal species, NTP induces substantial morphological alterations in biofilms, disrupting hyphae, and reducing extracellular polymeric substance production, particularly in A. alternata and F. culmorum. Notably, scanning electron microscopy analysis demonstrates significant disruption of the hyphae in NTP-treated biofilms, indicating its ability to penetrate the biofilm matrix, which is a promising outcome for biofilm eradication strategies. The use of NTP could offer a more environmentally friendly and potentially more effective alternative to traditional disinfection methods.

3.
Front Microbiol ; 14: 1217617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637122

RESUMO

Due to the emerging resistance of microorganisms and viruses to conventional treatments, the importance of self-disinfecting materials is highly increasing. Such materials could be silver or its nanoparticles (AgNPs), both of which have been studied for their antimicrobial effect. In this study, we compared the biological effects of AgNP coatings with and without a plasma-polymerized hexamethyldisiloxane (ppHMDSO) protective film to smooth silver or copper coatings under three ambient conditions that mimic their potential medical use (dry or wet environments and an environment simulating the human body). The coatings were deposited on 3D printed polylactic acid substrates by DC magnetron sputtering, and their surface morphology was visualized using scanning electron microscopy. Cytotoxicity of the samples was evaluated using human lung epithelial cells A549. Furthermore, antibacterial activity was determined against the Gram-negative pathogenic bacterium Pseudomonas aeruginosa PAO1 and antiviral activity was assessed using human rhinovirus species A/type 2. The obtained results showed that overcoating of AgNPs with ppHMDSO creates the material with antibacterial and antiviral activity and at the same time without a cytotoxic effect for the surrounding tissue cells. These findings suggest that the production of 3D printed substrates coated with a layer of AgNPs-ppHMDSO could have potential applications in the medical field as functional materials.

4.
Front Cell Infect Microbiol ; 12: 993029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211963

RESUMO

The increasing risk of antibiotic failure in the treatment of Pseudomonas aeruginosa infections is largely related to the production of a wide range of virulence factors. The use of non-thermal plasma (NTP) is a promising alternative to antimicrobial treatment. Nevertheless, there is still a lack of knowledge about the effects of NTP on the virulence factors production. We evaluated the ability of four NTP-affected P. aeruginosa strains to re-form biofilm and produce Las-B elastase, proteases, lipases, haemolysins, gelatinase or pyocyanin. Highly strains-dependent inhibitory activity of NTP against extracellular virulence factors production was observed. Las-B elastase activity was reduced up to 82% after 15-min NTP treatment, protease activity and pyocyanin production by biofilm cells was completely inhibited after 60 min, in contrast to lipases and gelatinase production, which remained unchanged. However, for all strains tested, a notable reduction in biofilm re-development ability was depicted using spinning disc confocal microscopy. In addition, NTP exposure of mature biofilms caused disruption of biofilm cells and their dispersion into the environment, as shown by transmission electron microscopy. This appears to be a key step that could help overcome the high resistance of P. aeruginosa and its eventual elimination, for example in combination with antibiotics still highly effective against planktonic cells.


Assuntos
Gases em Plasma , Infecções por Pseudomonas , Antibacterianos/farmacologia , Biofilmes , Endopeptidases/farmacologia , Gelatinases/farmacologia , Proteínas Hemolisinas/farmacologia , Humanos , Elastase Pancreática , Peptídeo Hidrolases , Plâncton , Gases em Plasma/farmacologia , Pseudomonas aeruginosa , Piocianina , Percepção de Quorum , Fatores de Virulência
5.
Plants (Basel) ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684244

RESUMO

Recently, much attention has been paid to the use of low-temperature plasmas and plasma-activated water (PAW) in various areas of biological research. In addition to its use in medicine, especially for low-temperature disinfection and sterilization, a number of works using plasma in various fields of agriculture have already appeared. While direct plasma action involves the effects of many highly reactive species with short lifetimes, the use of PAW involves the action of only long-lived particles. A number of articles have shown that the main stable components of PAW are H2O2, O3, HNO2, and HNO3. If so, then it would be faster and much more practical to artificially prepare PAW by directly mixing these chemicals in a given ratio. In this article, we review the literature describing the composition and properties of PAW prepared by various methods. We also draw attention to an otherwise rather neglected fact, that there are no significant differences between the action of PAW and artificially prepared PAW. The effect of PAW on the properties of wheat grains (Triticum aestivum L.) was determined. PAW exposure increased germination, shoot length, and fresh and dry shoot weight. The root length and R/S length, i.e., the ratio between the underground (R) and aboveground (S) length of the wheat seedlings, slightly decreased, while the other parameters changed only irregularly or not at all. Grains artificially inoculated with Escherichia coli were significantly decontaminated after only one hour of exposure to PAW, while Saccharomyces cerevisiae decontamination required soaking for 24 h. The differences between the PAW prepared by plasma treatment and the PAW prepared by artificially mixing the active ingredients, i.e., nitric acid and hydrogen peroxide, proved to be inconsistent and statistically insignificant. Therefore, it may be sufficient for further research to focus only on the effects of artificial PAW.

6.
Front Bioeng Biotechnol ; 10: 815393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237577

RESUMO

The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production. Non-thermal plasma (NTP) is a decontamination technique with documented efficiency against select bacterial and fungal pathogens combined with low damage to exposed materials. We have investigated NTP for decontamination of high-efficiency P3 R filters from viral respiratory pathogens in comparison to other commonly used techniques. We show that NTP treatment completely inactivates SARS-CoV-2 and three other common human respiratory viruses including Influenza A, Rhinovirus and Adenovirus, revealing an efficiency comparable to 90°C dry heat or UVC light. Unlike some of the tested techniques (e.g., autoclaving), NTP neither influenced the filtering efficiency nor the microstructure of the filter. We demonstrate that NTP is a powerful and economic technology for efficient decontamination of protective filters and other sensitive materials from different respiratory pathogens.

7.
Foods ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34945478

RESUMO

Cereals, an important food for humans and animals, may carry microbial contamination undesirable to the consumer or to the next generation of plants. Currently, non-thermal plasma (NTP) is often considered a new and safe microbicidal agent without or with very low adverse side effects. NTP is a partially or fully ionized gas at room temperature, typically generated by various electric discharges and rich in reactive particles. This review summarizes the effects of NTP on various types of cereals and products. NTP has undisputed beneficial effects with high potential for future practical use in decontamination and disinfection.

8.
Front Microbiol ; 12: 737635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712211

RESUMO

The acronym ESKAPE refers to a group of bacteria consisting of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. They are important in human medicine as pathogens that show increasing resistance to commonly used antibiotics; thus, the search for new effective bactericidal agents is still topical. One of the possible alternatives is the use of non-thermal plasma (NTP), a partially ionized gas with the energy stored particularly in the free electrons, which has antimicrobial and anti-biofilm effects. Its mechanism of action includes the formation of pores in the bacterial membranes; therefore, resistance toward it is not developed. This paper focuses on the current overview of literature describing the use of NTP as a new promising tool against ESKAPE bacteria, both in planktonic and biofilm forms. Thus, it points to the fact that NTP treatment can be used for the decontamination of different types of liquids, medical materials, and devices or even surfaces used in various industries. In summary, the use of diverse experimental setups leads to very different efficiencies in inactivation. However, Gram-positive bacteria appear less susceptible compared to Gram-negative ones, in general.

9.
J Fungi (Basel) ; 7(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34575753

RESUMO

Following our previous study of the therapy of onychomycosis by non-thermal plasma (NTP) and nail hygiene and to obtain some prerequisite data of dermatophytes sensitivity, the dynamics of those inactivation by NTP plasma was monitored for various strains of Trichophyton iterdigitale, Trichophyton benhamiae, Trichophyton rubrum, and Microsporum canis. Three strains of each species on agar plates were exposed with plasma produced by a DC corona discharge in the point-to-ring arrangement in various time intervals. Although all strains were sufficiently sensitive to plasma action, significant differences were observed in their sensitivity and inactivation dynamics. These differences did not correlate with the species classification of individual strains, but could be assigned to four arbitrarily created types of strain response to NTP according to their sensitivity. These results indicate that the sensitivity to plasma is not an inherent property of the fungal species, but varies from strain to strain.

10.
Microorganisms ; 9(9)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34576774

RESUMO

Water suspensions of cysts of a pathogenic clinical isolate of Acanthamoeba sp. were prepared, and the cysts were inactivated either in suspension or placed on the surface of contact lenses by the non-thermal plasma produced by the DC corona transient spark discharge. The efficacy of this treatment was determined by cultivation and the presence of vegetative trophozoites indicating non-inactivated cysts. The negative discharge appeared to be more effective than the positive one. The complete inactivation occurred in water suspension after 40 min and on contaminated lenses after 50 min of plasma exposure. The properties of lenses seem to not be affected by plasma exposure; that is, their optical power, diameter, curvature, water content and infrared and Raman spectra remain unchanged.

11.
Plants (Basel) ; 10(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451662

RESUMO

The legumes (Fabaceae family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries. This review summarizes current information about characteristics of legume seeds and adult plants after NTP treatment in relation to the seed germination and seedling initial growth, surface microbial decontamination, seed wettability and metabolic activity in different plant growth stages. The information about 19 plant species in relation to the NTP treatment is summarized. Some important plant species as soybean (Glycine max), bean (Phaseolus vulgaris), mung bean (Vigna radiata), black gram (V. mungo), pea (Pisum sativum), lentil (Lens culinaris), peanut (Arachis hypogaea), alfalfa (Medicago sativa), and chickpea (Cicer aruetinum) are discussed. Likevise, some less common plant species i.g. blue lupine (Lupinus angustifolius), Egyptian clover (Trifolium alexandrinum), fenugreek (Trigonella foenum-graecum), and mimosa (Mimosa pudica, M. caesalpiniafolia) are mentioned too. Possible promising trends in the use of plasma as a seed pre-packaging technique, a reduction in phytotoxic diseases transmitted by seeds and the effect on reducing dormancy of hard seeds are also pointed out.

12.
J Fungi (Basel) ; 7(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069444

RESUMO

Mycotoxins cause adverse effects on human health. Therefore, it is of the utmost importance to confront them, particularly in agriculture and food systems. Non-thermal plasma, electron beam radiation, and pulsed light are possible novel non-thermal technologies offering promising results in degrading mycotoxins with potential for practical applications. In this paper, the available publications are reviewed-some of them report efficiency of more than 90%, sometimes almost 100%. The mechanisms of action, advantages, efficacy, limitations, and undesirable effects are reviewed and discussed. The first foretastes of plasma and electron beam application in the industry are in the developing stages, while pulsed light has not been employed in large-scale application yet.

13.
Molecules ; 27(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011483

RESUMO

A non-thermal plasma (NTP) is a promising tool against the development of bacterial, viral, and fungal diseases. The recently revealed development of microbial resistance to traditional drugs has increased interest in the use of NTPs. We have studied and compared the physical and microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-point electrode configuration and a corona discharge in the point-to-ring electrode configuration. The electrical and emission properties of both discharges are reported. The microbicidal effect of NTP sources was tested on three strains of the bacterium Staphylococcus aureus (including the methicillin-resistant strain), the bacterium Pseudomonas aeruginosa, the yeast Candida albicans, and the micromycete Trichophyton interdigitale. In general, the cometary discharge is a less stable source of NTP and mostly forms smaller but more rapidly emerging inhibition zones on agar plates. Due to the point-to-ring electrode configuration, the second type of discharge has higher stability and provides larger affected but often not completely inhibited zones. However, after 60 min of exposure, the NTP sources based on the cometary and point-to-ring discharges showed a similar microbicidal effect for bacteria and an individual effect for microscopic fungi.

14.
Microorganisms ; 9(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374135

RESUMO

The inactivation of Schistosoma mansoni cercariae and miracidia was achieved by exposure to plasma produced by the positive, negative, and axial negative corona discharges. The positive discharge appeared as the most effective, causing the death of cercariae and miracidia within 2-3 min of exposure. The negative discharge was less effective, and the axial discharge was ineffective. The water pre-activated (PAW) by the discharges showed similar efficiency, with the exception of the significantly effective PAW activated with axial discharge. These facts, together with the observation of various reactions among plasma-damaged schistosomes, suggest that the mechanisms of inactivation by different types of discharges are different.

15.
PeerJ ; 8: e10259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194427

RESUMO

A critical lack of personal protective equipment has occurred during the COVID-19 pandemic. Polylactic acid (PLA), a polyester made from renewable natural resources, can be exploited for 3D printing of protective face masks using the Fused Deposition Modelling technique. Since the possible high porosity of this material raised questions regarding its suitability for protection against viruses, we have investigated its microstructure using scanning electron microscopy and aerosol generator and photometer certified as the test system according to the standards EN 143 and EN 149. Moreover, the efficiency of decontaminating PLA surfaces by conventional chemical disinfectants including 96% ethanol, 70% isopropanol, and a commercial disinfectant containing 0.85% sodium hypochlorite has been determined. We confirmed that the structure of PLA protective masks is compact and can be considered a sufficient barrier protection against particles of a size corresponding to microorganisms including viruses. Complete decontamination of PLA surfaces from externally applied Staphylococcus epidermidis, Escherichia coli, Candida albicans and SARS-CoV-2 was achieved using all disinfectants tested, and human adenovirus was completely inactivated by sodium hypochlorite-containing disinfectant. Natural contamination of PLA masks worn by test persons was decontaminated easily and efficiently by ethanol. No disinfectant caused major changes to the PLA surface properties, and the pore size did not change despite severe mechanical damage of the surface. Therefore, PLA may be regarded as a suitable material for 3D printing of protective masks during the current or future pandemic crises.

16.
J Fungi (Basel) ; 6(4)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050542

RESUMO

Onychomycosis is one of the most common nail disorders. Its current treatment is not satisfactorily effective and often causes adverse side effects. This study aims to determine the optimal conditions for non-thermal plasma (NTP) inactivation of the most common dermatophytes in vitro and to apply it in patient`s therapy. The in vitro exposure to NTP produced by negative DC corona discharge caused full inactivation of Trichophyton spp. if applied during the early growth phases. This effect decreased to negligible inactivation with the exposure applied six days after inoculation. In a group of 40 patients with onychomycosis, NTP therapy was combined with nail plate abrasion and refreshment (NPAR) or treatment with antimycotics. The cohort included 17 patients treated with NPAR combined with NTP, 11 patients treated with antimycotics and NTP, and 12 patients treated with NPAR alone. The combination of NPAR and NTP resulted in clinical cure in more than 70% of patients. The synergistic effect of NPAR and NTP caused 85.7% improvement of mycological cure confirmed by negative microscopy and culture of the affected nail plate. We conclude that NTP can significantly improve the treatment of onychomycosis.

17.
World J Microbiol Biotechnol ; 36(8): 108, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32656596

RESUMO

Non-thermal plasma (NTP), generated at atmospheric pressure by DC cometary discharge with a metallic grid, and antibiotics (gentamicin-GTM, ceftazidime-CFZ and polymyxin B-PMB), either alone or in combination, were used to eradicate the mature biofilm of Pseudomonas aeruginosa formed on Ti-6Al-4V alloy. Our aim was to find the conditions for NTP pre-treatment capable of enhancing the action of the antibiotics and thus reducing their effective concentrations. The NTP treatment increased the efficacy of relatively low concentrations of antibiotics. Generally, the highest effect was achieved with GTM, which was able to suppress the metabolic activity of pre-formed P. aeruginosa biofilms in the concentration range of 4-9 mg/L by up to 99%. In addition, an apparent decrease of biofilm-covered area was confirmed after combined NTP treatment and GTM action by SYTO®13 staining using fluorescence microscopy. Scanning electron microscopy confirmed a complete eradication of P. aeruginosa ATCC 15442 mature biofilm from Ti-6Al-4V alloy when using 0.25 h NTP treatment and subsequent treatment by 8.5 mg/L GTM. Therefore, NTP may be used as a suitable antibiofilm agent in combination with antibiotics for the treatment of biofilm-associated infections caused by this pathogen.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Ligas , Pressão Atmosférica , Ceftazidima/farmacologia , Gentamicinas/farmacologia , Microscopia Eletrônica de Varredura , Gases em Plasma , Polimixina B/farmacologia , Pseudomonas aeruginosa/metabolismo , Titânio/química
18.
Folia Microbiol (Praha) ; 65(5): 863-869, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32424471

RESUMO

The influence of non-thermal plasma (NTP) treatment on the prevention of antibiotic resistance of microbial biofilms was studied. Staphylococcus epidermidis and Escherichia coli bacteria and a yeast Candida albicans, grown on the surface of Ti-6Al-4V alloy used in the manufacture of prosthetic implants, were employed. Their biofilms were exposed to NTP produced by DC cometary discharge and subsequently treated with antibiotics commonly used for the treatment of infections caused by them: erythromycin (ERY), polymyxin B (PMB), or amphotericin B (AMB), respectively. All biofilms displayed significant reduction of their metabolic activity after NTP exposure, the most sensitive was S. epidermidis. The subsequent action of antibiotics caused significant decrease in the metabolic activity of S. epidermidis and E. coli, but not C. albicans, although the area covered by biofilm decreased in all cases. The combined effect of NTP with antibiotics was thus proved to be a promising strategy in bacterial pathogen treatment.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Gases em Plasma/farmacologia , Ligas , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Especificidade da Espécie , Staphylococcus epidermidis/efeitos dos fármacos , Titânio
19.
Faraday Discuss ; 222(0): 240-257, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32104864

RESUMO

Traditionally, two classes of silicon nanocrystals (SiNCs) are recognized with respect to their light-emission properties. These are usually referred to as the "red" and the "blue" emitting SiNCs, based on the spectral region in which the larger part of their luminescence is concentrated. The origin of the "blue" luminescence is still disputed and is very probably different in different systems. One of the important contributions to the discussion about the origin of the "blue" luminescence was the finding that the exposure of SiNCs to even trace amounts of nitrogen in the presence of oxygen induces the "blue" emission, even in originally "red"-emitting SiNCs. Here, we obtained a different result. We show that the treatment of "red" emitting, already oxidized SiNCs in a water-based environment containing air-related radicals including nitrogen-containing species as well as oxygen, diminishes, rather than induces the "blue" luminescence.

20.
Arch Microbiol ; 201(1): 87-92, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30255199

RESUMO

Serratia marcescens forms different colony patterns under distinct conditions. One of them is the concentric fountain-shaped pattern with pigmented center followed by unpigmented ring and pigmented rim. In this work, we study this pattern formation by construction of the mathematical model able to display this pattern based on putative metabolical traits, supported by series of experiments and by references. A pattern formation of such colony type depends on the disposition of glucose and amino acids, and is accompanied by a pH change in the agar medium. In this paper, we confirm that a metabolic activity of growing colony alters its environment which subsequently changes the colony formation. Presented model corresponds well with the real colony behaviour.


Assuntos
Aminoácidos/metabolismo , Glucose/metabolismo , Fenótipo , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/metabolismo , Meios de Cultura/metabolismo , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...